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Abstract 

If R is a ring graded by the semigroup S, then the smash product ring R#S* can be con- 
structed, and in many situations retains categorical “realization” properties analogous to those of 
the group-graded case. In particular, if S acts as endomorphisms on the ring A, then skew semi- 
group rings of the form A *S” and S’ *A are graded by S, so we may form the “skew-smash” 
rings (A *S*) # S* and (S* *A) # S*. On the other hand, S acts as endomorphisms on any ring 
of the form R # S”, so that the skew semigroup rings (R # S*) * S’ and S’ * (R # S’) may be 
produced. In particular we may perform this construction when R itself is a skew semigroup 
ring of the form A * S* or S* *A, thereby yielding “skew-smash-skew” rings. In this article we 
analyze the resulting skew-smash and skew-smash-skew rings, and prove that each can be re- 
alized as a skew semigroup ring for an appropriate ring and (possibly new) semigroup. Inherent 
in our investigation is the description of a number of methods by which given semigroups can 
be used to produce new, related semigroups. As one consequcncc of our results we provide a 
broader context for some of the group-theoretic “duality” results of Cohen and Montgomery. 

0. Introduction 

During the 1980s many authors studied group-graded rings. Probably the most cel- 

ebrated and useful results in the field are the two ‘duality’ theorems of Cohen and 

Montgomery [6, Theorems 3.2 and 3.51. Historical precedents, along with a current 

renewed interest in graded rings, lead to an interest in some kind of duality theorems 

for semigroup-graded rings. The main aim of this article is the investigation of such 

results. 
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Indeed, the Cohen-Montgomery results may be viewed as results about semigroup- 

graded rings, as follows. For a finite group G let S = {eXY 1 x, y E G} U {z} ; S has 

a semigroup structure defined by setting e,,e,, = euw and setting all other products 

equal to z. Then the Cohen-Montgomery theorem for actions can be stated as follows: 

If G acts on the ring R as automorphisms then R * G is G-graded, and the smash 

product (R * G) # G is isomorphic to the contracted semigroup ring RS*. Similarly, 

their duality theorem for coactions takes the form: If R is a G-graded ring then G acts 

as automorphisms on the smash product R# G, and (R # G) * G is isomorphic to the 

contracted semigroup ring RS. With this point of view in mind, we present in this 

article two types of results, of which we now give a brief synopsis. 

Let R be a ring graded by the finite semigroup S. Analogous to the construc- 

tion in the group-graded case (see e.g. [6]), we may form the smash product ring 

R #S*. In particular, if S is a semigroup which acts as ring endomorphisms on the 

ring A, then we may construct skew semigroup rings of the form S * A and A * S 

in a number of “natural” ways (we are purposely being rather imprecise with our 

notation here); regardless of the specific construction used, the resulting rings are al- 

ways graded by S, so that we may form the “skew-smash” rings (S * A)#S* and 

(A * S)#S*. 

On the other hand, if R is a ring graded by the semigroup S, then there are natural 

actions of S as ring endomorphisms on R#S*. In particular, “smash-skew” rings of the 

form S * (R # S* ) and (R # S* ) * S may be produced. In the specific case in which R is a 

skew semigroup ring over S, the resulting rings can be viewed as “skew-smash-skew” 

rings. 

The goal of this article is to describe explicitly skew-smash and skew-smash-skew 

rings. Throughout this article we will focus on two specific skew semigroup ring con- 

structions; one quite general, the other arising in more structured contexts. For both of 

these constructions, we show (in Section 2) that the skew-smash rings (S *A) #S* and 

(A * S) #S* can be realized (respectively) as the rings S * A and A * 2 for a suitable 

semigroup 2; see Theorems 2.3 and 2.5. Moreover, if S acts as automorphisms on the 

ring A then each of these rings is isomorphic to an incidence ring with coefficients in 

A. This last result may be viewed as a complete generalization to semigroups of the 

Cohen-Montgomery duality theorem for actions described above. 

Unfortunately, there seems to be no ‘nice’ generalization to semigroups of the cor- 

responding duality theorem for coactions. However, we are able to obtain concrete 

characterizations of certain types of rings in this setting. Specifically, in Section 3 we 

study the eight types of skew-smash-skew rings which arise in an examination of a 

ring A, semigroup S, and either one of the two specific types of skew semigroup ring 

constructions. We demonstrate that each of these eight rings can be realized as a skew 

semigroup ring over the ring A by utilizing a new semigroup which arises from the 

original semigroup S. 

Additional information about semigroups can be found in [7]. Indeed, the results of 

this article may be viewed as a natural continuation of the discussion which appears 

in [7, Ch. 61. Additional information about duality theorems for groups can be found 
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in [8]. Loosely speaking, the approach we take here for semigroups mimics to a small 

degree the approach described for groups in [8, Section 1.21. 

1. Preliminaries 

Throughout this article S will denote a semigroup. If S contains a zero we will 

always denote it by z, and in this case we denote S - {z} by S’. For simplicity of 

exposition, we will always assume that S is jinite; however, the reader will observe 

that a number of these results remain true more generally. The opposite semigroup 

of S will be denoted by Sop. Unless otherwise indicated, all functions and morphisms 

will be composed from left to right, so that f o g (or simply fg) will mean “first 

f, then g”. The letter A will denote an associative ring. We write E(A) to denote the 

collection of ring endomorphisms of A (in case A is unital, we do not assume that such 

an endomorphism preserves the multiplicative identity of A), while Aut(A) is used to 

denote the group of ring automorphisms of A. 

The semigroup S is called 1.i. (for “local identities”) in case S’ contains a set of 

orthogonal idempotents E such that for each g E S’ there exist (necessarily unique) 

e,e’ E E with ege’ = g. In this case we sometimes denote e by e, and e’ by ei. We call 

S right *-cancellative in case for any three elements f, g, h E S*, if fh = gh E S* then 

f = g. We call S a category in case S is l.i., and for any three elements f, g, h E S’, 
if f g E S* and gh E S* then fgh E S*. 

If 5 is a transitive relation on the set X, then the semigroup X5 is defined to be 

the set of ordered pairs {(x, y) E X x X 1 x 5 y} U {z}, with multiplication given 

by setting (x, y) . (x’, y’) = (x, y’) in case y = x’, z otherwise. The element (x, y) is 

sometimes denoted by & . If (X, 5) is a preorder, then X5 is 1.i. If A is any ring 

and (X, 5) is a preorder, then the incidence ring of X with coefficients in A is denoted 

Z(X,A). In particular, if (X, 2) is a totally ordered set with n elements, then Z(X,A) is 

the ring of n x n upper-triangular matrices over A, which we denote by U,(A). 

If r is a directed graph then the semigroup of r is defined to be the set of di- 

rected paths (possibly of length zero) in r, together with z. Multiplication is given by 

juxtaposition when appropriate, z otherwise. 

We say that a ring R is graded by S if there is a family {R,f 1 f E S} of addi- 

tive subgroups of R such that R = @ fcs Rf, and for each pair f,g in S we have 

Rf .&I CRSP If R is graded by the 1.i. semigroup S then we say R is locally unital 
in case for each e E E there exists a, E R, with the property that if g E S* and 

r E R, then a,‘,r = r = ra,;. Any locally unital graded ring R is unital (since we have 

assumed that all semigroups are finite), with 1R = CeEEae. 

When R is a ring graded by S then the smash product ring R #S* is defined to be 

the collection of S*-square matrices of the form 
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under the usual matrix operations, where rf E Rf, and rfefh,h denotes the matrix which 

is rf in the (f&h) coordinate and 0 elsewhere. We point out that if S is 1.i. and R is 

locally unital, then the ring R#S* presented here is identical to the ring RLIS* given 

in [4]. Specifically, by [4, Corollary 2.27 ] in this situation we get that the category 

R#S*-mod is equivalent to the category R-gr, (which consists of those S-graded left 

R-modules having zero z-component). Additionally, in this situation R#S* is unital, 

with ~R#s* = Cl,,. L,el,l. 

Definition 1.1. Let A be an associative ring, and let S be a finite semigroup. Suppose 

CT : S’ -+ E(A) (resp. 0 : S* + AM(A)) has the property that for any pair g,h in S 

with gh # z, (gh)o = (g)o o (!~)a. In this case we say that CJ is an action of S* ~1s 

endomorphisms (resp. automorphisms) on A. For a E A and h E S we denote (a)(h)a 

by ach)‘. 

We denote the abelian group esEs* A, by (S* *OA), where each A, = A. For s E S 

and a E A we denote the element of (S* *g A) which is a in the s-component and zero 

elsewhere by ~[a], or simply by sa. We define multiplication in (S* *c A) by setting 

ga hb = gh[ach)“b] for each pair g, h E S having gh # z and each pair a, b E A, setting 

ga . hb = 0 whenever gh = z, and extending linearly to all of (S” *U A). (S* *o A) is 

thus an associative ring. 

If in addition A is unital, we denote the subgroup esEs_ l(‘)’ . A, of (S* *g A) by 

S* *OA. It is easy to show that S” *c A is a subring of (S* *OA), and that these two 

rings are equal in case CT is an action as automorphisms on A. 

We call any ring of the form (S* *o A) or S* *,A a skew semigroup ring of S’ with 

coefficients in A. 0 

Definition 1.2. Let A be an associative ring, and let S be a finite semigroup. Suppose 

y : S* + E(A) (resp. y : S* + Aut(A)) has the property that for any pair g, h in S 

with gh # z, (gh)y = (h)y o (g)y. In this case we say that y is a reversing action of 

S* as endomorphisms (resp. automorphisms) on A. For a E A and h E S we denote 

(a)(h)y by uthh. 

We denote the abelian group BsES* A, by (A *? S*) , where each A, = A. For s E S 

and a E A we denote the element of (A *‘i S*) which is a in the s-component and zero 

elsewhere by [a]~, or simply by as. We define multiplication in (A *;’ S*) by setting 

ag . bh = [ab@)‘]gh for each pair g, h E S having gh # z and each pair a, b E A, setting 

ag bh = 0 whenever gh = z, and extending linearly to all of (A *? S*). (A *? S*) is 

thus an associative ring. 

If in addition A is unital, we denote the subgroup esEs* A, . lcsb of (A y S”) by 

A *‘i S*. It is easy to show that A *?S* is a subring of (A *i. S*) , and that these two 

rings are equal in case y is a reversing action as automorphisms on A. 

We call any ring of the form (A *? S*) or A *? S* a skew semigroup ring of S* with 

coefficients in A. •i 

Skew semigroup rings of the form (S* *g A) or (A *? S*) are the expected general- 

ization of (contracted) semigroup rings. On the other hand, skew semigroup rings of 
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the form S* *,A or A *,S* arise naturally in the study of endomorphism rings of graded 

modules. In addition, skew semigroup rings of this type are often unital, and possess 

some fairly interesting ring-theoretic properties. For additional information regarding 

skew semigroup rings of this type, see [2, 31. 

Throughout this article we will be presenting isomorphisms between the aforemen- 

tioned four types of skew semigroup rings and various other rings. In order to keep the 

notation and length of this article reasonably manageable, we will often spend most 

of our attention on a description of the isomorphisms for skew semigroup rings of 

the form (S* *,, A), and then let the reader supply the appropriate isomorphisms for 

rings of the form S* *,, A (by restriction) or rings of the form (A *:. S*) or A *;. S* (by 

symmetry). 

Analogous to the situation for groups, skew semigroup rings of any of the four 

types are the prototypical examples of rings graded by the semigroup S, where for each 

f E S” we define the f-graded component by setting (S* *CA) f = {f[a]lu E A} 

and (A *;. S*),- = {[u]flu E A}. (W e set the z-component of each of these rings 

equal to {O}.) 

The supporting details for the following remarks can be found in [3, Section 21. If S 

is an 1.i. semigroup then any local unital S-graded ring is unital. Nonetheless, the rings 

S* *,, A and A *;‘S* need not be unital or locally unital, even when S is 1.i. However, 

if CJ (resp. y) has the additional property that l(‘)‘a = a(‘)’ (resp. ulce):’ = uCe)y) for 

each e E E and a E A, then S* *,A (resp. A*,S*) is locally unital, hence unital. Under 

these hypotheses we say that 0 (resp. y) is a locally unitul action (resp. locally unitul 

reversing action). In particular, if S is an 1.i. semigroup then any action or reversing 

action of S* as automorphisms on a ring A is necessarily locally unital. 

Example 1.3. Let k be a field, and let W denote the matrix ring 

Let S denote the semigroup of the directed graph , + .?; so S = { ],T,~,z} with 1 and 

2 idempotent, ICC = a2 = z, and all other products equal to Z. Let ac,, +~Q+cQ~+~Q 

denote an arbitrary element of W. We define CJ : S* + E(W) by setting: 

(WI + be22 + ce23 + de33)(‘)” = uel I 
(uel I + be22 + ce23 + de33)(‘)’ = ue22 

CueI I + be22 + ce23 + de33)(2)u = be22 + ce23 + de33. 

A tedious check verifies that (s)cr E E(W) for each s E S*, and that IS is indeed an 

action of S as endomorphisms on W. Thus we may form the rings (S” *o. W) and 

s* *0 w. 

By definition, each of the elements of (S* *0 W) can be written in the form lwl + 

rw, + 2~2 (with each W( E W). Furthermore, since (1 w)(‘)’ = eli, (1 w)(‘)’ = e22, and 
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(1 w)(~)’ = e22 + ess, an easy computation verifies that the elements of S* *o W can be 

written in the form 

where a, b,c, d, e, f E k. Finally, another tedious computation verifies that S* *V W is 

in fact isomorphic to the ring Q(k) of upper triangular 3 x 3 matrices over k, by the 

map which takes 

If cr (resp. y) is the function which associates the identity automorphism on the 

ring A with each element of S*, then the resulting semigroup rings (S* *,A) and 

S’ *,, A (resp. (A *?S*) and A *? S*) are equal; we denote this (contracted) semigroup 

ring simply by S*A (resp. AS). In case S = XI for some preordered set X, then 

S’A ” AS* ” Z(X,A). 

If r~ is an action of S* as endomorphisms on A, then CJ may be viewed as a reversing 

action of (Sop)* on A in the obvious way. We denote the resulting skew semigroup 

ring by A *o So*. A similar statement holds for reversing actions. If S is a group then 

the rings S* *,, A and A *o So* are isomorphic; for general semigroups, however, they 

need not be (see for instance the remark following [3, Example 1.41). 

The following definitions are developed more fully in [3]. 

Definition 1.4. Let S be a semigroup, and let R be an S-graded ring. 

(1) Suppose S is right *-cancellative. We define an action p of S* as endomor- 

phisms on R#S* as follows: for each h E S’, (h)p E E(R#S*) is the linear extension 

of the function 

(0 : vas - 
rf efuh,yh if fgh E S*; 
o 

otherwise. 

(The right *-cancellativity of S is used to show that each (h)p is a ring homomorphism 

of R#S*.) Thus we may form the rings (S* *p [R#S*]) and ([R#S*] *p So*). If R#S* 

is unital (e.g. if S is 1.i. and R is a locally unital) we may form the rings S* *,, [R #S*] 

and [R#S*] *p So* as well. 

(2) We define a reversing action 1 of S’ as endomorphisms on R # S* as follows: 

for each h E S*, (h)l E E(R#S*) is the linear extension of the function 

(hV : ve.fg,g - ,g* rf e.fLk 
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(where we interpret the empty sum as 0). Thus we may form the rings ([R#S*] *;_ S*) 

and (SO* *;. [R#S*]) If R#S* is unital (e.g. if S is 1.i. and R is locally unital) we 

may form the rings [R#S*] *;, S’ and S”” *;. [R#S*] as well. 0 

When S is 1.i. and R is locally unital the two actions and two reversing actions 

described in Definition 1.4 are locally unital, so that the four rings S” *[I [R#S*], 

[R#S*] *{I So*, [R#S*] *;. S*, and So* *;~ [R#S*] are in fact unital. 

2. “Skew-smash” constructions 

If S is a semigroup for which there is an action (resp. reversing action) as endo- 

morphisms on the ring A, then we may form the skew semigroup ring (S” *A) (resp. 

(A * S*)) as described in the previous section. Any ring of this type is graded by S, so 

that we may in turn construct a ring of the form (S* *A) #S* (resp. (A * S*) #S*). 

Similar statements hold for rings of the form S’ * A (resp. A * S*). Our goal in this 

section will be to concretely describe these resulting “skew-smash” rings. Specifically, 

we will show that each of these may be realized as a skew semigroup ring for a new 

semigroup 2 with coefficients in A. 

Definition 2.1. Let S be any semigroup. We form a new semigroup s^ by setting S = 

{(s,x) E S’ x s* 1 sx E s*> u {Z}, and defining multiplication in S by setting 

in S: (s,x) (s’,x’) = 
1 

!$“x’) zhtriLf ’ 

It is easy to check that this indeed yields a semigroup 

is l.i., then so is 2, with z = {(eX,x) 1 x E S*}. 

structure on 2. Moreover, if S 

Now suppose CJ : S* + E(A) is an action of S* as endomorphisms on the ring A. We 

define a new function 2 : ?* + E(A) by setting ((s,x))? = (s)a. It is straightforward 

to show that Z? is an action of S* as endomorphisms on A (and that Z is locally unital 

in case S is 1.i. and g is locally unital). We therefore may in general form the skew 

semigroup ring (S* *;A), and the ring S* *; A when appropriate. 

Similarly, if 1’ : S* + E(A) is a reversing action of S” as endomorphisms on the 

ring A, we define a new function y : ?* + E(A) by setting ((s,x))y = (s)i’. Then T 

is a reversing action of S* as endomorphisms on A (and 7 is locally unital in case S 

is l.i. and 7 is locally unital). We therefore may in general form the skew semigroup 

ring (A *T?*), and the ring A *F?* when appropriate. 0 
!’ 

Example 2.2. Let S, W, and CT be the semigroup, ring, and action described in Exam- 

ple 1.3. It is easy to check that S = {( 1, 1 ), ( 1, a), (x, 2), (2,2)} U {I?}. In fact, S is 

isomorphic to the semigroup arising from the partially ordered set having i as its 

Hasse diagram. 
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The elements of (s^**;W) are of the form (l,l)~i~+(l,cr)w,,+(~~,2)~,~+(2,2)~~~ 

(where each w& E IV), while s^* * ;; W consists of elements of the form 

(where ki E k for 1 < i 5 7). We will describe s^* *;; W as a ring of matrices (indeed, 

as a smash product ring) in Example 2.4 below. 0 

We offer the remarks in this paragraph as a sidelight observation regarding one of the 

distinctions between a semigroup T and its nonzero elements T*. Using the notation 

of the previous example, we set T = S; then ii is an action of T* as endomorphisms 

on W. We claim that ii cannot be extended to a semigroup homomorphism from T to 

E(W). To see this, just suppose ;i could be extended. Since ( I,1 )(a, 2) = Z in T we 

would necessarily have 

(Z)Z= ((l,l).(cc,2))?= ((l,l))~o((a,2))ii=(l)oo(cc)a= (a)o, 

which is not the zero endomorphism on W. On the other hand, (1,l). (2,2) = Z in T, 

so that 

(Z)ii = ((1,l). (2,2))8 = ((1,1))80((2,2))e = (1)00(2)cJ, 

which is the zero endomorphism on W. 

The following theorem is the first main result of this article. In it, we show that there 

is a strong connection between the skew semigroup ring ?* *; A and the star-smash 

process. 

Theorem 2.3. Let S be a semigroup, and let (T be an action of S” as endomorphisms 

on the ring A. Then, with ii as described in Definition 2.1, there is an isomorphism 

of rings 

(S* *;A) ” (S* *o A) #S*. 

If in addition A is unital then this isomorphism restricts to an isomorphism of rings 

S* *;A ” (S* *g A) #S*. Moreover, if S is 1.i. and o is locally unital, then each of 

these latter two rings is unital, and the isomorphism is as unital rings. 

Proof. We define 0 : (2’ *;; A) + (S* *,, A) #S* by setting ((s,x)a) 0 = sae,,,r for 

each (s,x) E g* and each a E A, and extending linearly. Then for any (s,x), (s’,~‘) E ?* 

and a,a’ E A we have 

((s,x)a . (~‘,~‘)a’)0 

ccs’J’Haa/)@ if x = s’x’ 

if x # s’x’ 
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ssfa(s’ )a ’ a fhkf,d if x = s’x’ 

0 if x # s’x’ 
(using the definitions of C and 0) 

(sa . s’a’)e,,Y~,/,,~ if x = s’x’ 

0 if x # s’x’ 
(as the product is in S” *CA) 

.I 1 
= sue,,,, 5 a eslXl Xt 

= ((s,x)a)O . ((s’,x’)a’)O. 

Thus 0 is a homomorphism. It is easy to see from the 

rings that 0 is bijective. 

definitions of the appropriate 

Also, it is clear from the definitions that 0 restricts to an isomorphism from s* *;A 

to (S* *0 A) #S*. The final statement is straightforward. 0 

Example 2.4. With the notation as in the previous examples, the ring (S* *A W) #S* 

is, by definition, the ring of matrices of the form 

where ~ii 1, wzz, w,z, ~22 E IV. Similarly, the ring (S* *C W)# S* consists of those ma- 

trices of the form 

( 

l[helil 0 0 

0 lLhl1 4km + he231 
0 0 Xkse22 + k6ez + km31 ) 

where k, E k for 1 2 i < 7, the matrix units eii are taken from the 3 x 3 matrix ring 

over k, and we have listed the elements of S* in the order 1, a,2. The isomorphism 

0 : (?* *; W) -+ (s* *ri W) #S* and its restriction $* x W -+ (S* *a W)#S* are 

then precisely the expected ones, given the representations of (?* *;; IV) and ?* *; W 

provided in Example 2.2. 0 

In a manner analogous to that described above for actions, we get the following 

result for reversing actions. The proof is quite similar to the one given in Theorem 

2.3, and hence is omitted. 

Theorem 2.5. Let S be a 

morphisms on the ring A. 

(A +*) ” (A *? S*) 

semigroup, and let y be a reversing action of S’ as endo- 

Then there is an isomorphism of rings 

#S, 

given by the linear extension of a(s,x) - use,,, If in addition A is unital then 

this isomorphism restricts to an isomorphism A *;S’ E’ (A *;’ S’) #S*. Moreover, tf 

S is 1.i. and y is locally unital, then each of these’ latter two rings is unital, and the 

isomorphism is as unital rings. 
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Theorems 2.3 and 2.5 accomplish one of the goals described in the introduction. 

Specifically, we have constructed a new semigroup from an existing one, and shown 

that skew-smash rings may be realized as skew semigroup rings for these new semi- 

groups. In the remainder of this section we point out some specific consequences of 

these two theorems. 

We begin by noting that there is a strong connection between the semigroup 2 and 

certain preordered sets, described as follows. Let S be any semigroup. We define a 

relation 5 on S* by setting, for each pair y,h E S*, g < h if there exists ,f’ E S* 

with g = fh. Then < is easily shown to be transitive. Moreover, if S is l.i., then 5 is a 

preorder on S*. This preorder on S’ produces the semigroup Ss, consisting of elements 

Of the f0l.m 5fh.h where f, h E S* having ,fh E S*. When S is right *-cancellative, it 

is easy to show that 2 is isomorphic to S<, by the map (s,x) H<,~_~,~ 

Next, let y : S* + E(A) be a reversing action of S* as endomorphisms on A. 

We define the function Q: A?” + A *; ?* as the linear extension of (a(s,x))q = 

u(.‘-‘~~(~,x). It is straightforward to show ihat Q is a ring homomorphism. Moreover, if 

y: S* + Aut(A) is a reversing action of S as automorphisms on A, then Q is clearly 

bijective. Furthermore, if S is right *-cancellative and 1.i. then the semigroup ring A?* 

is precisely the incidence ring Z(S*,A) with the ordering on S* given in the previous 

paragraph. Thus we have 

Corollary 2.6. Zf y: S* -+ A&(A) is u reversing uction of the semigroup S us uuto- 

morphisms on A, then there is un isomorphism of rings 

AS;* ” (A *,?*) ” (A *;‘S*) #S* 

If A is unitul, we get an isomorphism AZ* ” A * ;?* E (A *i. S*)#S*, us these three 

rings are equal to the three rings (respectively) in the above displayed sequence oj 

isomorphisms. Moreover, if S is right * -c.uncellative and 1.i. then euch of these rings 

is isomorphic to the incidence ring I(S*,A). 

A construction analogous to the one described prior to the above corollary can be 

performed in situations where 0 : S’ + E(A) is an action of S’ on A as endomor- 

phisms; this yields a morphism from Z(S*,A)Op to @* *;A, which we do not investigate 

further here. However, in case 0 : S* + Aut(A) is an action of S* as automorphisms 

on A, then by considering the linear extension of the function from ?*A to ? *; A 

which takes (s,x)a H (s,x)&)~~‘, a computation similar to that given above yields 

Corollary 2.7. If C: S* + Aut(A) is an uction of the semigroup S as uutomorphisms 

on A, then there is an isomorphism of rings 

g*A % ($* *;A) ” (S* *Ir A) #S* 

If A is unit&, we get un isomorphism g*A +’ s^* *; A E (S* *,, A)#S*, us these three 

rings are equul to the three rings (respectively) in the above displuyed sequence of’ 
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isomorphisms. Moreover, if S is right *-cancellative und 1.i. then each of these rings 

is isomorphic to the incidence ring I(S*,A). 

As another consequence of Theorems 2.3 and 2.5, we use them along with [4, 

Corollary 2.27 and Proposition 3.6(3)] to obtain immediately 

Corollary 2.8. Let A be u unital ring, und let S be an 1.i. semigroup. 

(a) Suppose that o is u locally unital action of S* as endomorphisms on A. Then 

the category! S” *0 A-gr, (consisting of those S-graded left S” *o A-modules having (0) 

z-component) is equivalent to the cutegory 9 *;; A-mod of’ all left s^* *; A-modules. 

(b) Suppose that ; is a locally unital reversing action of S* as endomorphisms on 

A. Then the cateyory A *:’ S*-gr, (consisting of those S-graded left A *;’ S-modules 

haviny {0} z-component) is equivalent to the category A *$*-mod of all left A *;S*- 

modules. 

(c) [f’s is right *-cancellative, and if o is an action of S as automorphisms on 

il, or if ;I is a reversing action of S* as automorphisms on A, then the categories 

S* *0 A-gr, and A *;. S-gr, are each equivalent to the category I(S*,A)-mod of ull 

left modules over the incidence ring I(S*, A). 

Example 2.9. Let B be any unital ring. Let S denote the semigroup of I, where I is 

the directed graph 

.+.4.,.---f. 

I 2 n 

The path ring R = BT is equal to the (contracted) semigroup ring BS*, so that R is 

naturally graded by S. A straightforward computation shows that the preordered set 

Ss is actually partially ordered. In fact, this partially ordered set may be viewed as a 

disjoint union of chains, represented as a Hasse diagram by 

/ ! . . . I 

Thus by Corollary 2.6 (using the identity action of S* on B) we have an isomorphism 

BS* #S* ” B? ” I(S*, B) = B @ U2(B) @ Q(B) rFi . @ U,(B) 

(direct sum as rings). 

We note that by Corollary 2.8, the category BS*-gr, is in this way realized as the 

category of modules over a direct sum of incidence rings. 
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As a specific example, let S be the semigroup of Example 1.3. Then kS* is the path 

algebra of the directed graph 1. + ‘1 , so that the ring kS* #S* is isomorphic to the 

ring k $ U*(k), which in turn is isomorphic to the ring W of Example 1.3. 0 

If G is a group, then for each g, h in G we have g 5 h in the preordering described 

above, as g = (gh-‘)h. In particular, for any ring A and finite group G the ring 

Z(G,A) is equal to Mlol(A), the full IGI x JGJ matrix ring with coefficients in A. Thus 

by Corollaries 2.6 and 2.7 we immediately obtain the following “duality” results of 

Cohen and Montgomery. 

Corollary 2.10. ([6, Theorem 3.21) Let G be a jinite group. If CT is an action oj’ G 

as automorphisms on the unital ring A, then 

(G *c A)#G ” Mlcl(A). 

If y is a reversing action of G as automorphisms on the unital ring A, then 

(A *:’ G) # G = Mlcl(A). 

3. “Skew-smash-skew” constructions 

Unlike the results of the previous section (especially Theorems 2.3 and 2.5) and 

unlike the results for groups (e.g. [6, Theorem 3.51) we will not in general be able to 

realize “smash-skew” rings as skew semigroup rings with coefficients in the original 

graded ring. Perhaps surprisingly, however, we are able to obtain satisfactory results 

in the situation where the underlying graded ring is itself a skew semigroup ring. In 

fact, in this setting we obtain results which are similar in flavor to those of the skew- 

smash variety. Specifically, the underlying semigroup is used to produce new, related 

semigroups, and the resulting skew-smash-skew rings are then shown to be isomorphic 

to skew semigroup rings over these new semigroups. 

The process which yields the more general type of skew semigroup rings (i.e. those 

of the form (S* *A) and (A *S*)) will produce skew-smash-skew rings which are 

rather straightforward to describe; see e.g. Propositions 3.2 and 3.3. Such a descrip- 

tion will follow from the results of Section 2, together with some observations about 

“skew-skew” rings of a special type. On the other hand, the skew semigroup ring 

construction which produces rings of the form S* *A and A *S* for unital A will yield 

skew-smash-skew rings which are significantly different from these, and are not as easy 

to describe. Thus most our focus in this section will be on rings of these latter two 

types. 

Rephrasing, our goal for this section is to describe rings of the form skew-smash- 

skew. There are two types of skew semigroup rings; one general, one arising only for 

unital coefficient rings. For each of these, there are two types of resulting rings: those 

arising from actions and those arising from reversing actions. Both types are graded 
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by the appropriate semigroup, so we can form the corresponding skew-smash rings, 

as was described in the previous section. But as noted in Definition 1.4, there are four 

naturally occurring smash-skew rings. As a consequence, there are 2 x 2 x 4 = 16 

types of skew-smash-skew rings which we aim to investigate. Clearly an explicit de- 

scription of all 16 types would exceed the limits of the readers’ interest: thus we 

will, whenever possible, simply state the appropriate results, and indicate that the 

corresponding proof is either easy, or is completely analogous to a proof presented 

previously. 

We begin by describing “skew-skew” rings of a special type. 

Proposition 3.1. Let A be a ring, and let S and T be semigroups. Suppose 0 is un 

action of T’ as endomorphisms on A. Suppose further that K is an action of S as 

endomorphisms on (T* *a A} with the properties: 

(i) For each s f S* and t E T* either (tA)(‘)” = 0 or (tA)tSjK C t,A for some 

tl E T*. In this case we denote the (necessarily unique) element tl by t(S)K. 

(ii) (t)a = (P)” )a whenever t E T* has (tA)(“)” 5 ttSjKA. 

In this situation we let U = S’ x T* U {zI/}, where zu is some symbol not in S x T*; 

U is a semigroup with multiplication de$ned by setting zu to be the zero element of 

U, and 

(s,t) . (S’J’) = 
(ss’, P’)“t’) if ss’ E S” and t@‘)“t’ E T’; 
zu 

otherwise. 

(So U is just the semidirect product of S and T via K). Then the map 8 : U’ --+ E(A) 

given by setting ((s,t))e = (t) 0 is an action of U’ as endomorphisms on A such that 

(S* c, (T* *k, A}) % (U* *U A) . That is, the “skew-skew” ring (S’ *L (T’ t, A)) is 

isomorphic to a skew semigroup ring with coeficients in A. 

Proof, All assertions in this proof are straightforward to check; their verifications are 

left to the reader. We note that property (ii) is required to show that 8 is an action, and 

that the indicated isomorphism (S* *, (T’ *a A)) t-t (U* *o A} is given by the linear 

extension of s[ta] H (s, t)a. 0 

Proposition 3.2. Let CJ be an action of the right *-cancellutive semigroup S as endo- 

morphisms on the ring A. Then there exists a semigroup S and an action 0 of S* as 

endomorphisms on A such that 

(s* *,> (S’ *u A} #S*) g (S* *#A). 

That is, the skew-smash-skew ring (S* *P (S* t, A) #S*> is isomorphic to a skew 

semigroup ring with coeficients in A. 

Proof. By Theorem 2.3 we have that (S* *cr A) #S* E (2’ *; A). It is now easy to 

check that under this identification, the action p of S* on (S* *, A} #S* given in 
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Definition 1.4 corresponds to an action of S* on S* *;A (which we also denote by p) 

defined by the linear extension of 

((9,x)a)(“)” = (s, XYh if sxy E S”; 

0 otherwise. 

Moreover, /, and 2 are easily shown to satisfy properties (i) and (ii) of Proposition 3.1, 

with p in the role of ti and ? in the role of g. Thus Proposition 3.1 applies, and yields 

(S* *[> (S” *,A) #S*) g (S* *[I (?* *;A)) E (U* *O A) We denote U in this situation by 

$; S can be explicitly described as S = S* x S* u {zs} = {(v,(s,x)) 1 sx E S*} u {zs}, 

where multiplication is given by 

1 

(YY’, (SS’J’)) if yy’ E S*, ss’x’ E S 

in S : (Y, (s,x)) . (Y’> (S’J’)) = and xy’ = s’x’; 

0 otherwise. 

Furthermore, the isomorphism (S” *p (S* *0 A) #S*) G’ (S* *o A) is given by 

Q : s’[(sa)e,,,] H (s’, (s,x))a. 0 

There are seven additional skew-smash-skew rings which can be formed using the 

general version of skew semigroup rings; their development is completely analogous 

to the one given above. Specifically, we consider an action or reversing action of a 

semigroup S on a ring of the form (T* *A) or (A x T*) , and describe the resulting 

skew-skew ring as a skew semigroup ring with coefficients in A. Then, employing the 

identifications afforded by Theorems 2.3 and 2.5 we describe an isomorphism from an 

appropriate skew-smash-skew ring to the resulting skew semigroup ring. We describe 

three of these rings in the next proposition. The proofs are entirely similar to the 

proofs given in Propositions 3.1 and 3.2 and so are omitted. (We remark that the right 

*-cancellativity of S is required to produce the action p of S* on smash product rings. 

On the other hand, even though this condition is not required to produce the reversing 

action 1 of S” on smash product rings, due to our desire to mimic property (i) in 

Proposition 3.1, we do need right *-cancellativity in order to realize skew-smash-skew 

rings for reversing actions as skew semigroup rings for new semigroups.) 

Proposition 3.3. Let A be cc ring, and let S and T be semigroups. Suppose o is un 

action or reversing action of T* us endomorphisms on A. Suppose further thut K is 

un uction or reversing uction of S* us endomorphisms on (T* *a A) (resp. (A *0 T*)) 

with the properties: 

(i) For each s E S* und t E T* either (tA)@)’ = 0 (resp. (At)@)’ = 0) or 

(tA)(“)” C tlA (resp. (At)‘“)” (I At,) for some tl E T*. In this case we denote 

the (necessarily unique) element tl by t@jK. 

(ii) (t)o = (t”)“) CJ lvhenever t E T* hus (tA)(“)” 2 &“)‘A (resp. (At)(“)” CA@)‘). 

(1) In cuse cr is an uction and K is u reversing uction then there exists u semi- 

group U und an action 8 of iJ* on A such that ((T* c, A) *E S*_) c (U’ *cl A) 

If S is right *-cuncellutive, then applying this generul result with S in the role of 
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T and Sop in the role of S together with Theorem 2.3 yields an isomorphism 

R : (((S’ *gA) #s*) *,, So*) E (s* *H A), where ,S + = S* x So* as sets, and mul- 

tiplication is given by: 
((SS’G’Y)9Y’Y) if y’y E S*,ss’x’y E S’ 

in E : (6,x), Y> . (6+,x’), Y’) = 

L 

and x = s’x’y; 

=s otherwise. 

(2) In case a and K are each reversing actions then there exists a semigroup U 

and a reversing action 9 of U* on A such that ((A *V T*) *E S*) 2 (A *c) U*) . Zf S* is 

right *-cancellative, then applying this general result with S in the role of T together 

with Theorem 2.5 yields an isomorphism Q+ : (((A *a S’) #S*) *J. S*) g (A *e S+*), 

where S+* = S* x S* as sets, and multiplication is given by: 

in S, : ((sJ), Y) . ((s’,x’), Y') 

((ss’, k )> YY’ ) 

=L 

if there exists (unique) k E S* with 

ky = x’ and x = s’k, and yy’ E S*; 

ZS otherwise. 

(3) In case a is a reversing action and K is an action then there exists a semigroup 

U and a reversing action 6’ of U’ on A such that (S* + (A *O T*)) 2 (A *o U’) If 

S is right *-cancellative, then applying this general result with S in the role of T 

and Sop in the role of S together with Theorem 2.5 yields an isomorphism &: 

(So* *i, ((A *o S*) #S*)) g (A *e & *), where &* = So* x $‘* as sets, and mul- 

tiplication is given by 

(Y’Y,(SS’,X’)) if y’y E S*, ss’x’ E S* 

in & : (Y, (~9)) . (Y’, (s’J’)) = 

L 

and x = s’x’ y’; 

= s otherwise. 

We note that there are four additional statements analogous to those made in Propo- 

sitions 3.2 and 3.3 above, for rings of the form So* * A and A * So*; we invite the 

reader to provide such statements as he/she sees fit. 

It is straightforward to check that the four semigroups S, 2, S_, and & are iso- 

morphic in case S is a group. 

We now undertake the task of describing skew-smash-skew rings in the context 

of unital rings. This is a rather messy undertaking in general. However, with a mod- 

icum of additional structure (namely, that S is l.i.), we can explicitly describe the 

elements of the “smash-skew” portion of such rings, which will in turn allow us 

to describe “skew-smash-skew” rings as skew semigroup rings for appropriate semi- 

groups. As we shall see, there is a somewhat surprising lack of symmetry in these 

constructions. The information contained in the next lemma appears in [3, Section 41; 

we omit the proof here. 
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Lemma 3.4. Let R be u locally unital ring graded by the right +cancellutive 1.i. semi- 

group S. Let p (resp. i) be the action (resp. reversing action) described in Definition 

1.4. 

(1) The elements of S fp [R # S] are sums of expressions of the form 

{h[rf.efg,yl I fs # z, Yr E 4, and fg=Ih for some 1~s”). 

(2) The elements of [R #S] eP S”* ure sums of expressions of the form 

{[rfe~q,slh I fu # z, rf E Rf, and g = lh for some 1 E S"} . 

(3) The elements of [R#S*] *), S are sums of expressions of the form 

{[rfefs,O I f 9 # z, rr E R.1, and gh # z> . 
(4) The elements of So* *;_ [R#S*] are sums of expressions of the form 

{4r~e,fs,J I .fu #z, r( E 4, and fgh # z). 

The procedure carried out at the beginning of this section to describe general skew- 

smash-skew rings involved using the isomorphisms of Section 2, together with a de- 

scription of skew-skew rings. We are unable to follow the same type of procedure 

here. Essentially, this is due to the fact that the process of multiplying scalar elements 

in R # S* by an element of the form (l~#s* )(‘)P or ( IR#s* )(‘)’ does not correspond to 

an endomorphism of R # S’. Thus we are required to treat each of these skew-smash- 

skew rings as a separate case, a process which will take up the remainder of this 

article. 

As long as the action or reversing action of the semigroup S on a ring of the form 

(T* *g A) or (A *n T*) restricts to an action or reversing action of S on subrings of the 

form Z’* *,, A or A *,, T*, then the resulting skew-smash-skew ring in the unital setting 

will be a subring of the corresponding general skew-smash-skew process. We have 

already exhibited isomorphisms between these general skew-smash-skew rings and 

skew semigroup rings with coefficients in A (Propositions 3.2 and 3.3). Fortunately, 

we will be able to utilize restrictions of these isomorphisms to the appropriate subrings 

in order to realize these subrings as skew semigroup rings with coefficients in A. 

We now give the first of eight results in which we realize a skew-smash-skew ring 

in the unital setting as a skew semigroup ring with coefficients in the original ring of 

scalars. 

Theorem 3.5. Let S be a right *-cancellative 1.i. semigroup, and let o : S” 4 E(A) be 

a locally unital action of S as endomorphisms on A. Then there is an 1.i. semigroup 

S and a locally unital action 0 : s* -+ E(A) which yields an isomorphism of rings 

S* *;iA Z S* *P [(S* *,, A)#S*]. 

Proof. We let 3 denote the hi. semigroup whose elements are 

S = {(l,h,f,g) E (S*)4 1 fh ES’, lg E S*, and fh = &I} U {Z}, 
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and where multiplication is defined in 3 by setting 

{ 

(II’, Ah’, f, 9’) if ll’g’ E S*, fhh’ E S* 

in 3: (Z,h,f,g).(Z’,h’,f’,g’) = and g = f’; 

z otherwise. 

It is easy to check that E = {(e,,ei,g,g) ) g E S*} is a set of local identities for 3, and 

that S is a category whenever S is. We define the locally unital action 0 : s* --+ E(A) 

of S as endomorphisms on A by setting (I, h, f, g)?? = (1)~. 

A tedious check (utilizing the right *-cancellativity of S) reveals that for I, g, h E S* 

with Ig E S*, 

(lR#S’) @)JJ . I[ l(‘)‘a]e,,,, = 
l[ l(‘)“a]el 9.9 if there exists f E S* with lg = fh; 

0 otherwise 

as elements of (S* *O A) # S*. 

For the remainder we utilize the notation given in the proof of Proposition 3.2. We 

define the function s : 3 --f 3 by s : (I, h, f, g) H (h, (1, g)). It is tedious to show that s 

is an injective semigroup homomorphism (the right *-cancellativity of S is required for 

injectivity). This function is easily shown to induce an injective ring homomorphism 

; : 3’ *,A -+ (S* *O A). We now consider the map a : %* *;iA --f S* *P [(S” *a A) #S*] 

defined by setting a = 5 o 2-l. Specifically, 2 is the linear extension of the function 

described by 

2 : (I, h, f, g)[ l(‘,h,.f,g)ru] - h[l[ l(‘)“a]e,Q,g] 

The computation above indicates that in this situation we have h[l[l(‘)“a]e!,,,] = 

h[( lR#s* )@jp . Z[l(‘)‘a]e,,,J, so that n indeed maps into S* *p [(S* *,, A)#S*]. That 

a is onto is seen by using the same computation. 0 

In a manner analogous to that described above, we may use the semigroup ?? to 

obtain a description of another skew-smash-skew ring. 

Theorem 3.6. Let S be a jinite right *-cancellative 1.i. semigroup, and let 11 : S* --f 

E(A) be a locally unital reversing action of S as endomorphisms on A. Then there is 

an isomorphism of rings A *,??* 2 S *P [(A *? S)#S*]. 

Proof. We define the map 32 : A*?$* --+ S* *P [(A*.,S*) #S*] to be the linear extension 

of the function [u~(‘~~~/~~)~](Z, h, f, g) ++ h[[al(‘)y]le~~,~]. By proceeding in a manner 

similar to that given in the proof of the previous theorem, it is straightforward to show 

that a is indeed an isomorphism of rings. 0 

We now give three results analogous to Theorem 3.5 for three additional types of 

skew-smash-skew rings. 
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Theorem 3.1. Let S be a right *-cancellative 1.i. semigroup, and let o : S* + E(A) 

be a locally unital action of S as endomorphisms on A. 

(1) There is an 1.i. semigroup S and a locally unital action iT : s* + E(A) which 

yields an isomorphism of rings S* *;A ” [(S* *O A)#S*] *P So*. 

(2) There is an 1.i. semigroup -s’ and a locally unital action d : T* i E(A) 

which yields an isomorphism of rings ??* *7 A 2 [(S* *C A)#S*] *A S*. 

(3) Using the same semigroup S and same action iT as described in statement (I), 

there is an isomorphism of rings S* *;A g So* *;, [(S* *o A)#S*]. 

Proof. As the verifications of the statements made in this proof are analogous to those 

made in the proof of Theorem 3.5, we simply furnish the appropriate definitions of the 

new semigroups, actions, and isomorphisms. For brevity we utilize the notation given 

in the statement of Proposition 3.3. 

(1) We let S denote the 1.i. semigroup whose elements are 

S = {(f&Z) E (S*)3 I fgZ E S*} u {q, 

where multiplication is defined in S by setting 

in 5 : (f, g, 1) . (f ‘, g’, Z’) = 
1 

kf f ‘7g” Z’Z) Igfthye=${Lg”” 

The set E = {(e,,g,eL) 1 g E S*} is a set of local identities for S, and S is a 

category whenever S is. We define iT : ?* --f E(A) by setting (f ,g, Z);J = (f )o. We 

now define the function < : s + S by setting (f ,g, 1) H ((f, gl), 1). It is tedious to 

show that < is an injective semigroup homomorphism (the right *-cancellativity of S 

is required for injectivity). This function induces an injective ring homomorphism 2 : 

s* *; A + (S* *o A) . The map 6 : ?* *; A + [(S* *,, A) #S*] *P So* produced by 

setting Sz = To Q-’ IS the desired isomorphism. Specifically, 6 is the linear extension 

of the function described by 

E : (f, g, Z)[l(f,g,rGa] H [f [ l(f)ua]efs~,gl]Z. 

(2) We let ?? denote the 1.i. semigroup whose elements are 

?? = {(f,h,Z) E (S*)3 1 fh E S* and hZ E S*} U {T}, 

where multiplication is defined in ?? by setting 

in -s’: (f,h,Z).(f’,h’,l’) 

(ff’,k,Zl’) if f f’ E S, II’ E S*, and 3k E S* 

= with h = f’k and kZ = h’; 

7 otherwise. 
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The set 3 = {(e,,g,eh) 1 g E S*} is a set of local identities for 3;‘. Unlike the 

semigroups 3 and S, the semigroup -s’ need not be a category even when S is (see the 

remarks subsequent to this proof). We define 7’ : ??* + E(A) by setting (f, h, l)d = 

(f)o. We now define the function < : 3 --f A’+ by setting (f,h, 1) H ((f,h), I). It is 

tedious to show that < is an injective semigroup homomorphism. This function induces 

an injective ring homomorphism 7 : SI**+l + (x*+-+4). The map d : ??**7A --t 

[(S* *ri A) #S*] *;, S* produced by setting d = s o 2-l is the desired isomorphism. 

Specifically, 2 is the linear extension of the function described by 

2 : (f, h, I)[ l(.f,h,‘)da] - [f[ lCf)‘,]efh,Jl. 

(3) If R is any locally unital ring graded by S, then by [3, Proposition 4.6(l)] we 

have S”* *;, [R # S*] 2 [R #S*] *PSo*. The result now follows by setting R = S* *CA, and 

using part ( 1) of this theorem. For completeness, we note that an explicit description 

of this isomorphism is given by the linear extension of the function 

A 
52 : (f, g, Z)[lC1*“~“ba] - I[f[l(f)aa]efu,s]. 0 

Unlike the corresponding results for 3 and S, it turns out that -s’ need not be a 

category when S is a category. For instance, let X be the totally ordered set {a, b, c, d} 

where a < b < c < d. We let S denote the semigroup XI as described in Section 

2; it is easy to show that S is a category. For notational simplicity we set &b= x, 

<b,c= p, <cd= y, &,,= 1, <b,b= 2, <c,c= 3, and <d,d= 4. Then it is straightforward 

to check that in 3;’ we have 

(c~/j,y).(P,~,4) = (@,3,4) # Y+ and (B,y,4).(~,4,4) = (pY,4,4) # 7, 

while ](~,B,Y). (P,r,4)1 . (~,4,4) = (@‘,3,y). (~4~4) = 7’. 

Suppose that the semigroup S is super-cancellative; that is, if u, u’, v, w, w’ E S’ with 

uvw = u’vw’ # z, then u = u’ and w = w’. For instance, any semigroup arising from a 

partially ordered set or an acyclic directed graph has this property. We define a relation 

r on S* by setting, for each pair c,d E S*, 

czd in case 3f,k,gES* with c= fk and d=kg. 

Then (as described in [ 11) we may form the “generalized incidence ring” I(S*, t, A). A 

straightforward check yields that, in this setting, Z(S*, r, A) is isomorphic to the semi- 

group ring ??*A, via the linear extension of the map which takes (f ,h, /)a E -Sf*A 

to aefh,h/ E Z(S*,z,A). In fact, the skew-smash-skew construction described in this 

section was the first author’s original motivation for considering these generalized in- 

cidence rings. 

In the situation where R is an algebra over a field which is graded by the semigroup 

S, Beattie [5, Example 2. lo] has given a description of rings of the form [R # S”] *1 S’ 
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as rings of matrices with a nonstandard multiplication. Her approach utilizes notations 

and techniques from Hopf algebras. Beattie’s description of [R#S*] *j, S” is not as a 

skew semigroup ring with coefficients in R, but rather as matrices whose entries are 

taken from appropriate S-components of R. In the specific case where cr is an action 

as automorphisms and R = S* *0 A, then each of the S-graded components of R is 

isomorphic to A. This observation yields that when A is an algebra over a field, our 

construction coincides with Beattie’s. 

We complete our description of skew-smash-skew rings by listing out the final three 

isomorphisms; these are the analogs of Theorem 3.6. 

Theorem 3.8. Let S be a jinite right *-cancellative 1.i. semigroup, and let y : S* + 

E(A) be a locally unital reversing action of S’ as endomorphisms on A. 

(1) There is an isomorphism of rings A *,s* ” [(A *‘i S*) # S*] *P So*, given by the 

linear extension of the function [al(~f~g~$(f, g, 1) +-+ [[al(f~~]fefu~,8~]1 . 

(2) There is an isomorphism of rings A *T;, -s’* 2 [(A *? S*)#S*] *;. S*, given by 

the linear extension of the function [al(f,b,r)T]( f, h, I) H [[al(f)y] f efh,h]l. 

(3) There is an isomorphism of rings A *;g g So* *;, [(A *‘i S*)#S], given by the 

linear extension of the function [al(fsg%‘G](f, g, 1) +--+ I[[al(f)‘]fef,,,]. 

We now describe the semigroups 3, S, and -s’ for a particular semigroup S. 

Example 3.9. We again let S denote the semigroup { 1, a, 2, z} described in the previous 

Examples. It is tedious but straightforward to verify the following statements regarding 

the semigroups which arise from S. 

(1) S’ = {(Ll, l,l),(l 9% 1,@),(1,2,@,~),(4~> 1>2),(42,42),(2,2,2,2)]. 
Moreover, S is isomorphic to the semigroup with zero consisting of the upper triangular 

3 x 3 matrix units and 0. Specifically, 

(2) $* = {( 1, 1, l), (1, 1, a), (1, CI, 2), (c(, 2,2), (2,2,2)} . Moreover, S is isomorphic to 

the semigroup with zero consisting of the following five 3 x 3 matrix units and 0. 

Specifically, 

S 2 {e,,,e2,,e22,e23,e33,0}. 

(3) -s’* = {(1,1,1),(1,1,a),(1,c~,2),(a,2,2),(2,2,2)}. Moreover, -s’ is isomorphic 

to the semigroup with zero which arises from S by identifying eis with 0. Specifically, 

3% {ell,el2,e22,e23,e33,0) where we define ei2 e23 = 0. 

We note that, as S is a category, the elements of S* and -s’* coincide. However, as is 

apparent from their representations as matrix units, the semigroups S and -s’ are not 

isomorphic. 0 
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We conclude with some observations regarding the constructions presented in this 

section. First, we note that the descriptions given in the above Example indicate that 

certain “related” skew semigroup rings need not be isomorphic. Specifically, we let S 

act on the field k via the identity action, and we let A denote the ring kS* #S. Then 

by invoking the appropriate theorems of this section, the rings S* *p A, A *p So*, and 

A*;,S* are isomorphic, respectively, to the semigroup algebras k??*, kg*, and k-Sf*. It is 

straightforward to show that these three semigroup algebras are pairwise nonisomorphic. 

Second, if G is a group then we define the semigroup TG = {(f, g, h) E G3} U {zT}, 

where multiplication in TG is given by setting (f,g, h) . (f’, g’,h’) = (f, g’, hh’) if 

g = f', and zr otherwise. Then the semigroups G, G, and ?? are each isomorphic 

to TG; the appropriate isomorphisms to TG are given by sending (I, h, f, g) in ?? to 

(f, g,h), sending (f,g, I) in ?; to (fgZ,g, 1-l) and sending (f, h, 1) in ?? to (fh,hl,f). 

Moreover, for any ring A and any action B (resp. reversing action y) of G as automor- 

phisms on A, each of the resulting skew-smash-skew rings is isomorphic to the full 

ICI x ICI matrix ring MiG,(G *o A) (resp. Mlcl(A *? G)). As a consequence of this last 

observation we conclude that, in contrast to the isomorphisms described in Corollaries 

2.8 and 2.9, the skew semigroup rings involving -6, G, and ?? need not be isomorphic 

to the corresponding (unskewed) semigroup rings. 

Third, it is easy to show that if S is l.i., then S embeds in each of the semigroups 

s,S, and -s’. These embeddings are not as direct summands. 

Fourth, it is shown in [2] that if R is a locally unital ring graded by the 1.i. semi- 

group S, then the ring R#S* may be viewed as the ring End& U(R)) of graded 

endomorphisms of the canonical S-graded module U(R). As given in [2, Proposition 

3.31, there are natural locally unital actions and locally unital reversing actions of S* as 

endomorphisms on EndR-&U(R)). It is tedious but straightforward to show that these 

actions and reversing actions correspond to the actions and reversing actions of S* on 

R # S* given in Definition 1.4, under the identification of R # S* with EndR_,,( U(R)). 

Finally, suppose R is graded by the 1.i. semigroup S. We would like to realize rings 

of the form (R#S*) * S* or S* * (R#S*) (i.e., general smash-skew rings) as skew 

semigroup rings with coefficients in R. This was done by Cohen and Montgomery for 

the case when S = G is a finite group: by [6, Theorem 3.51 any ring of the form 

(R#G)*G or G*(R#G) is isomorphic Mlcl(R), which in turn is isomorphic to Rc’. 

However, we are unable to obtain such a result for more general semigroups. Briefly, 

this is because for a group G, for any two elements c,d E G, the number of elements 

in the semigroup ?? (described in the proof of Theorem 3.5) of the form (c,h,d, g) is 

exactly IGI . In an arbitrary semigroup, however, this number can vary (depending on 

the pair c,d). 

On the other hand, the isomorphisms presented in this section indicate that we ure 

able to obtain results similar to those described in the previous paragraph in the specific 

case when R itself is a skew semigroup ring over S having coefficients in the ring A. 

In this situation, however, we obtain skew semigroup rings having coefficients in A, 

rather than in R. 
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The above remarks notwithstanding, we are able to obtain, for rather general semi- 

groups, concrete descriptions of rings of the form (R#S*) * S* and S* * (R#S*) in 

terms of the coefficient ring R. Specifically, in [2] we generalize the group-theoretic 

results of Albu and NlstPsescu by describing these smash-skew rings as specific types 

of rings of endomorphisms of a canonical graded module. 

The authors are extremely grateful to the referee, whose insightful comments helped 

them to significantly improve both the mathematical content as well as the presentation 

of the original version of this manuscript. 
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